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Antiferromagnetic coupling in multinuclear transition metal complexes usually leads to electronic ground
states that cannot be described by a single Slater determinant and that are therefore difficult to describe by
Kohn-Sham density functional methods. Density functional calculations in such cases are usually converged
to broken symmetry solutions which break spin and, in many cases, also spatial symmetry. While a procedure
exists to extract isotropic Heisenberg (exchange) coupling constants from such calculations, no such approach
is yet established for the calculation of magnetic anisotropy energies or zero field splitting parameters. This
work proposes such a procedure. The broken symmetry solutions are not only used to extract the exchange
couplings but also single-ion D tensors which are then used to construct a (phenomenological) spin Hamiltonian,
from which the magnetic anisotropy and the zero-field energy levels can be computed. The procedure is
demonstrated for a bi- and a trinuclear Mn(III) model compound.

Introduction

Polynuclear transition metal compounds have a tremendously
complex electronic structure because of the large number of
unpaired electrons. This complexity can be reduced substantially
if one only considers eigenstates in an energy window well
below electronic excitations of mononuclear complexes. This
part of the spectrum can be rationalized by a simplified treatment
in which the unpaired electrons of a given transition metal center

i are first coupled to form an effective spin Ŝ
f

i ) (Ŝxi,Ŝyi,Ŝzi), and
such effective spins are the only degrees of freedom in a
(phenomenological) spin Hamiltonian which contains param-
eters that can be adjusted to reproduce the low-energy part of
the spectrum of the full microscopic Hamiltonian. In the simplest

case, there is an isotropic coupling of the spins Ŝ
f

i in the form
of a Heisenberg Hamiltonian

with the isotropic coupling parameters Jij. Including the Zeeman
term (interaction with an external magnetic field) and thermal
averaging, the parameters Jij determine the temperature depen-
dence of the magnetic susceptibility and are determined by fitting
to such experimental data.

The connection between the phenomenological parameters
(coupling constants) Jij and the microscopic electronic Hamil-
tonian is established through the low-energy part of its spectrum.
Energy differences between low-lying states of the spin Hamil-
tonian are of course a function of the coupling constants, and
in simple cases the knowledge of few such energy differences
is sufficient to determine them. For a fully wave function based
ab initio method, one calculates the ground and lowest excited
states of the system and uses the computed energy levels to

determine the coupling constants, thus identifying the energy
levels of the microscopic Hamiltonian with the energy levels
of the spin Hamiltonian. Consider, as a simple example, two
weakly coupled octahedral Cr3+ centers, each of which has a
local nondegenerate quartet ground state configuration. This
gives a multiplet of 16 low-lying states split by the superex-
change interaction between the two metal centers. A spin
Hamiltonian for two S1 ) S2 ) 3/2 spins and an isotropic
coupling J12 > 0 (antiferromagnetic coupling) gives a singlet
ground state, above which there is a triplet, a quintet, and a
septet with relative energies J12, 3J12, and 6J12. With a full ab
initio treatment, one not only can extract the parameter J12 as
the energy difference between the lowest singlet and triplet state
but also can test whether the other low-lying level agree with
the “spin ladder” pattern of the spin Hamiltonian spectrum. Such
calculations cannot be used for large systems, because a reliable
quantum chemical description generally requires a CASSCF
calculation on top of which dynamical electron correlation has
to be added. Because the number of CASSCF wave function
parameters grows exponentially with the size of the active space
(or the number of open shell orbitals or the number of transition
metal centers), this method can be used if there are at most
four open shell metal centers. Beyond that, the method of choice
is based on density functional theory. However, the Kohn-Sham
density functional approach is built upon a single-determinant
reference wave function that does not have the correct spin
symmetry for most of the low-energy states. For the above
example, only the high-spin septet state has a single-determinant
description, so no energy differences can be obtained directly
from density functional calculations. The standard approach to
solve this problem goes back to Bagus1 and Ziegler2 and was
adapted to magnetic coupling by Noodleman3,4 (for a minire-
view, see ref 5). In this broken symmetry approach, one
calculates Kohn-Sham energies for single-determinant reference
functions, most of which break spin and (if present) spatial
symmetry. In our example, one localizes the open shell orbitals
on the two chromium centers and runs two calculations, one
where all unpaired electrons are “spin up”, and another one
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Ĥiso ) ∑
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JijŜ
f

i · Ŝ
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j (1)
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where “spin up” open shell orbitals are occupied on one
chromium center while “spin down” orbitals are occupied on
the other. The Kohn-Sham energies thus obtained from two
self-consistent calculations are then identified with the expecta-
tion value of the Spin Hamiltonian Ĥiso for Ising configurations
(where each spin has either maximum or minimum value of
the spin projection). In our example, these are the configurations
|(3/2)(3/2)〉 and |(3/2)(-3/2)〉 whose energy expectation value
is (9/4)J12 and (-9/4)J12. The coupling parameter J12 is thus
calculated by multiplying the difference of the two broken
symmetry Kohn-Sham energies with 2/9. Note that, unlike the
Ising configurations of the spin Hamiltonian, the broken
symmetry Kohn-Sham wave functions are not orthogonal to
each other (due to overlapping spin densities from different
metal centers), which may require additional corrections.6

Multiplets with total spin S > 1/2 may further be split by
relativistic corrections to the Hamiltonian, because spin then
no longer is a good quantum number. This phenomenon is called
zero field splitting (ZFS) which alludes to the fact that the
degeneracy is lifted even in the absence of an external magnetic
field (no Zeeman splitting). ZFS is related to magnetic anisot-
ropy, that is, the variation of the ground state energy of a
(laboratory fixed) system in an external homogeneous magnetic
field Bb of given strength B ) |Bb| and varying direction nb )
Bb/B. For a given value of B, the magnetic anisotropy energy
(MAE) W(nb) is the total energy as a function of the direction nb
) Bb/B of the magnetic field. This is formally a ground state
property which is more amenable to a density functional
treatment than multiplet splittings. In the strong exchange limit,
which means that zero field splitting is small compared to
isotropic (Heisenberg) couplings, the whole system behaves to

a good approximation as a single effective (collective) spin Ŝ
f

described by a spin Hamiltonian

(we use a Cartesian representation where R,� run over the
Cartesian coordinates x,y,z). For different orientations of the
system the numbers DR� transform like a tensor. For the sake
of simplicity, we have assumed a Zeeman interaction ĤBb )

-gµBBb · Ŝ
f

with an isotropic g value (µB is the Bohr magneton).
In the general case, there is an anisotropic g tensor which gives
no contribution to zero field splitting but adds an “orbital”
contribution to the magnetic anisotropy. If there is no zero field
splitting (D ) 0), the ground state energy of this Hamiltonian
is -gµBSB. This value does not depend on the direction of Bb
such that there is no magnetic anisotropy. This is so because
the unperturbed (D ) 0) ground state wave function is an

eigenfunction of Bb · Ŝ
f
, that is, the spin aligns to the magnetic

field. In a strong magnetic field, ĤBb is much larger than ĤZFS

such that the latter can be treated by first-order perturbation
theory. Through first order, the only energy contribution that

depends on nb is the expectation value of ĤZFS ) Ŝ
f
·D · Ŝ

f
with

the ground state wave function for D ) 0. A little algebra shows
that the ground state energy W(nb) is given by7

The “constant terms” are the angular avarage of the function
W(nb) and include everything that does not depend on the
direction nb of the magnetic field, including the energy contribu-
tion from the Zeeman interaction. The elements of the tensor
M (or D) can easily be extracted from the value of W(nb) for
just a few directions nb. For sufficiently strong magnetic fields
where the first-order treatment is valid, the MAE tensor M does
not depend on the magnetic field strength B. One might ask
why we differentiate between the ZFS tensor D and the MAE
tensor M if they only differ by a constant. The reason is, that
the MAE function is also defined for systems that cannot be
described by the single-spin Hamiltonian eq 2. Here, the ZFS
tensor D is not defined but the magnetic anisotropy function
can still be of the second form of eq 3. This case is realized,
for example, for an ensemble of two isolated effective spins.
We follow the widely used convention to make the MAE tensor
traceless by defining the “constant terms” as the angular average
of the MAE function.

The theory of the calculation of magnetic anisotropy energies
or zero-field splittings based on density functional theory has
been developed for high-spin states which can directly be
represented in single-determinant Kohn-Sham calculations.8-11

For the microscopic Dirac-Coulomb operator, the magnetic
anisotropy stems from the spin-orbit interaction (including the
two-electron spin same orbit terms). Relativistic corrections to
the electron interaction (loosely speaking, the Breit interaction)
lead to corrections of the spin orbit interaction (the so-called
spin other orbit terms) as well as to the magnetic interaction
between electron spins (spin-dipolar interaction). We refer to
recent discussions of the relative importance of these terms12,13

as this is not in the focus of the present paper.
The density functional methods for the evaluation of zero

field splittings or magnetic anisotropies developed so far are
valid for the high-spin case only. While this is explicitly stated
by Neese13 for his method, Pederson and Khanna,9 applied their
method from the very beginning to antiferromagnetically
coupled systems where the Kohn-Sham wave function is not
spin adapted, without analyzing the implication thereof. The
purpose of the present work is to discuss how the broken
symmetry approach, which has proven very useful for the
calculation of Heisenberg (exchange) couplings in such systems,
could be extended to the calculation of magnetic anisotropy
energies.

The Many-Spin Hamiltonian and Magnetic Anisotropy of
Ising Configurations

The simplest possible extension to include magnetic anisot-
ropy in the isotropic Heisenberg Hamiltonian (eq 1) for a
collection of effective spins is

Here we have only included so-called single ion contributions
to the magnetic anisotropy through the tensors Di. For systems
with localized spin densities that we have in mind, such a form
of the Spin Hamiltonian covers all microscopic effects reason-
ably well except the spin-dipolar interaction. The latter can

Ĥ ) ∑
R,�

DR�ŜRŜ� - gµB ∑
R

BRŜR ) Ŝ
f
·D · Ŝ

f
- gµBBb · Ŝ

f
)

ĤZFS + ĤBb (2)

W(nb) ) S(S - 1
2)nb · D · nb + constant terms (3)

) nb · M · nb + constant terms

Ĥsp ) ∑
i<j

JijŜ
f

i · Ŝ
f

j + ∑
i

Ŝ
f

i · Di · Ŝ
f

i - µB ∑
i

giBb · Ŝ
f

i

(4)
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be separated into one-center and two-center terms. While the
one-center terms of the spin-dipolar interaction are encompassed
by the above form of the Spin Hamiltonian, the two-center terms
have to be separated off. These can be evaluated to a good
approximation through pointlike effective spins (magnetic
dipoles) on the open shell metal centers. In the strong exchange
limit, where superexchange couplings are considered much
stronger than zero field splitting such that the latter can be treated
by first-order perturbation theory, the magnetic anisotropy W(nb)
for an eigenstate of the spin Hamiltonian is calculated by first
finding the ground state of the isotropic Heisenberg Hamiltonian
(first term of Ĥsp), second, aligning the spin of that state in the
direction of nb (this is what a strong external magnetic field would
do) and then, third, evaluating the expectation value with the
ZFS part (the second term of Ĥsp). When there are antiferro-
magnetic couplings, the state of interest can usually not be
described microscopically by a single Slater determinant, and
therefore a DFT calculation does not correspond to what we
just described in terms of the Spin Hamiltonian. This is exactly
the analogue of the situation encountered in the calculation of
magnetic exchange coupling constants. It is now suggested to
identify the magnetic anisotropy function obtained by a broken
symmetry Kohn-Sham calculation with the nb-dependent energy
expectation value (with the Hamiltonian equation (4)) of an Ising
configuration that is rotated in spin space as to align the spins
in the direction of nb. Note that the isotropic Heisenberg part of
Ĥsp gives a contribution that does not depend on nb and is thus
part of the “constant terms”. The central question is, of course,
whether this mapping between the spin Hamiltonian and the
Kohn-Sham calculations makes sense and whether enough
information can be extracted this way to determine the magnetic
anisotropy of the state under consideration.

For the above spin Hamiltonian, one can analytically execute
the above recipe. Unfortunately, the magnetic anisotropy
calculated for all the Isinig configurations is the same, since
their nb-dependent energy expectation value is in either case

This behavior is also observed in Kohn-Sham calculations
which include the spin-orbit contribution only. For this case,
the perturbative method of Pederson and Khanna9 starts with a
scalar-relativistic spin-unrestricted Kohn-Sham calculation and
computes a second-order energy lowering through the spin-orbit
interaction as

where the indices i (a) run over all occupied (virtural) orbitals,
both spin-up and spin-down, and ĤSO is the spin-orbit part of
the effective (one-particle) Kohn-Sham operator. The orbitals
φi(nb) and φa(nb) are two-component orbitals that are obtained
by rotating the spin of the scalar relativistic orbitals away from
the z axis into the direction nb before plugging them into the
second-order energy expression. If the electronic structure can
be described with doubly occupied, singly occupied, and virtual
orbitals which are well localized on fragments containing the
metal centers, then not only the total magnetic anisotropy can

be decomposed into “single ion” contributions but also the
magnetic anisotropy is invariant with respect to a spin flip of
all open shell scalar relativistic orbitals at a single site. Different
Kohn-Sham broken symmetry wave functions should therefore
give similar magnetic anisotropies, and the behavior of Ising
configuration of Ĥsp is simulated to some extent. For first-row
transition metal atoms, the above equation is a crude ap-
proximation as Neese has shown13 that both the spin other orbit
terms as well as the spin-dipolar interaction have a substantial
contribution to the magnetic anisotropy for a prototype mono-
nuclear manganese(III) complex, and even if they are taken into
account, only about 70% of the experimental value is obtained
in the DFT calculation. Note that the “PKK” results in Table 1
of ref,13 which come from a procedure involving eq 6, have to
be multiplied by 4/3 because Pederson and Khanna treated spin
classically to relate the M and D tensors, the latter is therefore
too small by a factor (2S - 1)/2S.7 The point we want to make
here is that taking into account the spin other orbit and
spin-dipolar terms will not change the observation that all
broken symmetry DFT calculations give very similar magnetic
anisotropies, provided one first subtracts the two-center contri-
butions from the spin-dipolar interaction, for example through
a point-dipole approximation.

In their calculation on the Mn12O12 acetate, an extensively
studied system and a sort of guinea pig for investigators
interested in magnetic anisotropy energies, Park et al.14 have
also observed that different broken symmetry calculations gave
very similar magnetic anisotropy energies. They found very
similar values, between 54.1 and 55.4 K, for 12 different cases.
While they were fully aware the DFT calculations are not spin
eigenfunctions (which can only be described by a linear
combination of many Slater determinants), they developed an
argument that led to the conclusion that all low-energy spin
eigenfunctions have the same magnetic anisotropy, which should
match the result obtained from the various calculations. Central
to their argument is the conjecture that no Slater determinants
generated by single-orbital spin flips are present in the true
many-particle wave function because of their high energy
expectation value. This is not true and it does not even hold for
the single-ion spin multiplets. Furthermore, if their argument
is applied to singlet states (if they are present in the spectrum
of the Heisenberg Hamiltonian) it would assign a sizable
magnetic anisotropy which is absurd because singlets cannot
have a magnetic anisotropy. As an aside, if they had properly

W(nb) ) ∑
i

{Si(Si -
1
2)nb · Di · nb} + constant terms

(5)

W(nb) ) -∑
i

occ

∑
a

virt 〈φi(nb)|ĤSO|φa(nb)〉〈φa(nb)ĤSO
φi(nb)〉

εa - εi

(6)

TABLE 1: Kohn-Sham (KS) and Magnetic Anisotropy
Energies (MAE) for Different Ising-Type Configurations of
the Model Compounds (PBE Exchange Correlation
Functional, Results for the BP Functional in Parentheses)

MAE (K)

model
Ising

configuration
Ising

energy KS energy (Eh) axial in-plane

1 UUa 4Jb -3086.442642 -21.51 0.88
(-3088.153400) (-21.39) (0.87)

UD 4J -3086.450734 -19.91 0.15
(-3088.161333) (-19.85) (0.15)

2 UUU 8J + 4J′ -4553.612953 -34.15 2.52
(-4556.088895) (-33.77) (2.36)

UUD -4J′ -4553.622156 -30.85 0.11
(-4556.097906) (-30.86) (0.12)

UDU -8J + 4J′ -4553.629853 -29.24 1.22
(-4556.105467) (-29.13) (1.21)

a “U/D” denotes “spin up” or “spin down” at the manganese
centers. b J is the coupling constant between adjacent manganese
centers, and J′ is the coupling constant between the terminal
manganese centers in 2.
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taken into account the multideterminantal nature of the ground
state, their computed magnetic anisotropy would have been
smallersthe agreement with experimental data would be worse
but the result would also be more consistent with what has been
observed for mononuclear complexes.

Extracting Single-Ion Tensors from DFT Calculations,
Results for Model Systems

While the exchange coupling constants Jij can be obtained
from the energy differences obtained by running DFT calcula-
tions for several broken symmetry configurations, we have just
seen that the magnetic anisotropy parameters obtained in these
calculations are very similar and do not provide enough
information to extract the single-ion Di tensors of the spin
Hamiltonian. The key idea is now to perform a series of
computer experiments, namely, DFT calculations, which do not
model an actual physical system but one which correspond to
a spin Hamiltonian in which all Di are zero except a single one.
The molecular magnetic anisotropy obtained in that calculation
then allows us to extract the tensor components of that particular
nonzero Di. The whole set of single-ion tensors can be obtained
if such an experiment is repeated for all open shell metal centers.
Together with the exchange coupling constants Jij obtained from
the energy differences of the broken symmetry configurations,
all parameters of the spin Hamiltonian are known and one can
compute its spectrum, or the magnetic anisotropy of the state
of interest (usually the ground state). It is interesting to note
that this approach is related to “real” experiments15 where in a
multinuclear iron complex, all iron(III) ions except one have
been replaced by a magnetically inactive gallium ion, and the
measured magnetic anisotropy was then used to extract the iron
single-ion tensor.

Currently, we do not include the spin-dipolar interaction in
our magnetic anisotropy calculations; therefore it is sufficient
to “switch off” the spin-orbit coupling at all metal centers
except one to extract the single-ion tensor of that center. With
what remains from the spin-orbit operator one can then
compute magnetic anisotropies, either by a second-order
perturbation theory approach or by self-consistent two-
component density functional calculations using the collinear
approach for the exchange-correlation potential.7,8,16 The com-
puted molecular magnetic anisotropy tensor is then divided by
Si(Si - 1/2) and thus converted to a single-ion Di tensor.

To illustrate how the suggested procedure works, we have
performed calculations on two model systems Mn2(OH)6(OH2)4

(compound 1, Scheme 1) and [Mn3(OH)8(OH2)6]+ (compound
2) which we will name “Mn2O2” and “Mn3O4” for short. All
manganese atoms are in the oxidation state +III (d4 configu-
ration). Because we are interested in a proof of the concept here,
we used an idealized molecular geometry in which the Mn-OH2

bonds are set to 220 pm, while all other Mn-O bonds are set
to 190 pm. All O-Mn-O angles are 90° or 180°. Although
idealized, this geometry shows the main features observed in
Mn(III) complexes, where an elongation of the Mn-O bonds

along one axis is often observed because of a Jahn-Teller
instability of an octahedral d4 configuration. The molecule-fixed
Cartesian coordinate system is oriented such that the (elongated)
Mn-OH2 bonds are parallel to the z axis, while the x axis
connects the manganese atoms. We performed quasi-relativistic
calculations using the ZORA(MP) operator17,18 with basis sets
of triple-� quality (see Supporting Information). The contribution
of a certain atom to spin-orbit coupling is “switched off” by
removing the contributions of that atom to the effective (model)
potential in the spin-orbit operator (for technical details, see
Supporting Information). However, our approach does not
critically depend on how the spin-orbit interaction is switched
off for a certain atom. For example, a one-center approximation
is a key ingredient in the atomic mean field approximation19

much used for the two-electron contributions to spin-orbit
coupling, in order to get rid of the multicenter two-electron
spin-orbit integrals. This operator also found use in the
calculation of magnetic anisotropies12,13 and has already “built
in” the recipe to be switched off for certain atoms, and the
extension to the one-electron terms is straightforward. The PBE20

and BP21,22 exchange-correlation functionals were used (these
acronyms are built from the names of the authors involved).

The manganese atoms are connected by two hydroxy bridges
from which we expect strong antiferromagnetic coupling. First,
a scalar-relativistic spin-unrestricted Kohn-Sham calculation
was converged for a given Ising configuration where all unpaired
electrons at a given center are either “spin up” or “spin down”,
and then Pederson’s formula (eq 6) was used to compute the
spin-orbit correction W(nb) which depends on the spin alignment
direction nb and is of the form given by eq 3. For both model
compounds studied, the MAE tensor is diagonal in the Cartesian
frame described above. Since we have made it traceless, it is
characterized by two numbers, namely, the axial anisotropy,
Mzz - (1/2)(Mxx + Myy), and the in-plane anisotropy (1/2)|Mxx

-Myy|.
Table 1 shows the Kohn-Sham energies and magnetic

anisotropies for the Ising-type configuration of model com-
pounds 1 and 2 (the others are symmetry equivalent). The UD
and UDU configurations are lowest in energy for these two
compounds, which shows the antiferromagnetic coupling. For
Mn2O2 (1), we compute an exchange coupling constant of J )
319 K (27.5 meV) from the PBE functional, which is in the
right ballpark for manganese couplings of this type. The BP
functional gives a quite similar result (J ) 313 K). The
computed Kohn-Sham energies for Mn3O4 (2) do not form an
equidistant series. These energies can be fitted assuming an
exchange coupling J′ between the terminal manganese centers
in addition to the coupling between adjacent ones. From the
PBE energies one gets J ) 334 K (28.7 meV) (similar to Mn2O2)
and a weak antiferromagnetic coupling J′ ) 30 K (2.5 meV)
between the terminal ions. The BP results are quite close (J )
327 K, J′ ) 29 K). The axial MAE is similar for the different
configurations of a model (∼10% larger in absolute value for
the high-spin configurations). The difference probably comes
from the “leaking” of the spin density from different metal
centers to same ligand atoms, especially the bridging oxygens.

The broken symmetry Kohn-Sham energies provide enough
information to set up the isotropic Heisenberg Hamiltonian, and
the energies of the true many-electron states can be computed. For
Mn2O2 (1), one gets a singlet ground state (S ) 0, E ) -6J)
and the lowest excited state is a triplet (S ) 0, E ) -5J). For
Mn3O4 (2), the ground state is a quintet (S ) 2, E ) - 10J +
4J′) followed by a triplet (S ) 1, E ) - 8J). The MAEs from
the broken symmetry calculations on the other hand are not directly

SCHEME 1: Model Systems “Mn2O2” (1) and “Mn3O4”
(2)
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related to true the ground state MAE, which for example vanishes
for Mn2O2 (1) because it is a singlet. It becomes clear that the
assumption14 that all low-energy states have the same MAE
makes absolutely no sense in this case. What one gets from all
broken symmetry configurations is more or less the magnetic
anisotropy of the high-spin state. In order to make progress
within a density functional computational scheme, one must
extract single-ion tensors Di from the calculation such that one
can set up the spin Hamiltonian (eq 4) and compute the MAE
of the ground state of that Hamiltonian. One suggestion to
extract such information comes from Baruah and Pederson.23

Here, to extract a single-ion MAE tensor, the orbitals in the
numerator of eq 6 are expanded in compact atom-centered basis
functions and only those contributions are retained where all
four basis functions are associated with that ionic center. Since
our ZORA(MP) method,17,18 unlike other implementations of
ZORA, does not need a mapping of basis functions to atomic
centers, we keep this property and use a technically different
procedure to extract single-ion tensors by “switching off” the
contributions to spin-orbit coupling from certain atoms (see
above), that we have already used in ref 7. If we switch off the
spin-orbit interaction at the manganese atoms, we get a
vanishing MAE (<0.02 K) for both compounds. Doing the
reverse experiment, and switching off spin-orbit coupling at
all non-manganese atoms, one does not retrieve the magnetic
anisotropy of the “full” calculation (for a detailed experiment,
see ref 7). To extract a single-ion tensor associated with a
specific metal ion, it is therefore suggested to “switch off”
spin-orbit coupling at all other metal centers.

For the various broken symmetry configurations we have
extracted the single-ion anisotropy of the manganese centers
using this recipe. This gives single-ion MAE tensors which are
divided by Si(Si - (1/2)) (Si ) 2 for Mn3+ centers) to produce
the local Di tensors. These tensors are diagnoal in our molecular
frame, and the diagonal elements are presented in Table 2 for
symmetry unique atoms. Note that the two terminal manganes
atoms Mn1 and Mn3 become nonequivalent for the broken
symmetry (hence the name!) configuration UDU and produce
two different single-ion tensors.

Having evaluated the parameters of the spin Hamiltonian,
we can now proceed and calculate the magnetic anisotropy

energy and/or the ZFS energy levels. For the examples worked
out here, the spacing of the energy levels of the Heisenberg
Hamiltonian is much larger than the width of the ZFS multiplets,
so we can assume the strong exchange limit and proceed as
described above. Within the strong exchange limit, the final
result is invariant with respect to a uniform scaling of the
exchange coupling constants as long as their sign is not reversed.
The famous Mn12O12 acetate molecule with its high degree of
spin frustration is an example where the strong exchange limit
is not valid. This case can be handled with the proposed method
simply by a one-shot full diagonalization of the spin Hamilto-
nian. This is not difficult but the disadvantage is that then the
energy levels can no longer be rationalized in terms of a D tensor
of a single effective spin.

Because the single-ion tensors differ somewhat for different
broken symmetry configurations, it is suggested to use the tensors
extracted from the configuration closest in energy to the state
under consideration (for ground states, the lowest-energy broken
symmetry calculation). If we apply our procedure to model
system 1, we get zero magnetic anisotropy for the ground state
(no matter how we choose the Di) because the ground state is
a singlet. While it is of course pointless to compute the MAE
of a singlet, it is assuring that our computational procedure
correctly assigns zero anisotropy in this case. Since it might be
interesting to see how different the magnetic anisotropy can be
for the different spin states, we document in Table 3 the results
for the low-energy spin states, as extracted from the spin
Hamiltonian equation (4) and the single-ion tensors (PBE
results) from Table 2. In the strong exchange limit, the results
for Mn2O2 do not depend on the exchange coupling constant J,
while those for Mn3O4 depend on the ratio J/J′, which has been
taken from the PBE results. The D tensors of all the states are
diagonal in our Cartesian frame, and we give the axial and
rhombic ZFS parameters D and E for the various states together
with the axial and in-plane magnetic anisotropy. For Mn2O2

(1), we get zero anisotropy for the ground state singlet and the
anisotropy of the high-spin (S ) 4) state is close to the value
computed for the UU configuration, which is a single Slater
determinant spin eigenfunction. The small differences reflect
the errors introduced by a reduction of the molecular properties
to three effective spins. We see very significant variations of

TABLE 2: Single-Ion ZFS Tensors Di for Models 1 and 2
for Various Broken Symmetry Configurations (PBE
Functional, Results from the BP Functional in Parentheses)

Di tensor components

model Ising configuration centera Dzz Dxx Dyy

1 UUb Mn1 -2.36 + 1.29 + 1.07
(-2.35) (+1.28) (+1.06)

UD Mn1 -2.21 +1.08 +1.13
(-2.20) (+1.08) (+1.13)

2 UUU Mn1 -2.42 +1.47 +0.95
(-2.40) (+1.44) (+0.95)

Mn2 -2.49 +1.31 +1.18
(-2.46) (+1.29) (+1.17)

UUD Mn1 -2.36 +1.35 +1.01
(-2.34) (+1.34) (+1.01)

Mn2 -2.31 +1.07 +1.24
(-2.29) (+1.06) (+1.23)

Mn3 -2.11 +0.90 +1.21
(-2.10) (+0.90) (+1.20)

UDU Mn1 -2.16 +1.01 +1.15
(-2.15) (+1.01) (+1.14)

Mn2 -2.19 +0.90 +1.29
(-2.18) (+0.90) (+1.29)

a Only symmetry unique atoms shown. b “U/D” denotes “spin up”
or “spin down” at the manganese centers.

TABLE 3: Relative Energies, ZFS Parameters D and E and
Magnetic Anistropy (all values in K) for Low-Lying Spin
States of Mn2O2 (1) and Mn3O4 (2), from a Spin
Hamiltonian with Parameters Extracted from Kohn-Sham
Calculations (PBE functional)a

state ZFS parameter magnetic anisotropy

model S Erel D E axial in-plane

1 0 0 0.00 0.00 0.00 0.00
1 319 +13.92 0.10 +6.96 0.05
2 954 +1.42 0.01 +4.26 0.03
3 1914 -0.66 0.00 -4.97 0.04
4 3190 -0.71 0.02 -21.24 0.66

2 2 0 -4.58 0.13 -13.73 0.40
1 548 -4.30 0.17 -2.15 0.08
3 1002 -0.45 0.02 -3.39 0.16
0 1126 0.00 0.00 0.00 0.00
2 1216 +1.60 0.11 +4.80 0.32
...
4 4466 -0.43 0.02 -6.09 0.27
5 5224 -0.74 0.03 -16.65 0.59
6 6012 -1.00 0.05 -32.99 1.76

a The strong exchange limit has been imposed.
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the magnetic anisotropy for the different spin states: for example,
the two lowest excited states (S ) 1 and S ) 2) have a magnetic
anisotropy with an easy plane instead of an easy axis, in other
words, the lowest-energy component of the ZFS multiplet is
the MS ) 0 state. Note that for the S ) 3 state, we have extracted
the Di single-ion parameters from the UD configuration. Since
energy expectation valus of both the UD and UU configuration
have the same distance (1276 K) to the S ) 3 state, we may
extract Di from either configuration. If we use the parameters
from the UU configuration for this state, we get an axial
anisotropy of -5.31 K and an in-plane anisotropy of 0.17 K.

For Mn3O4, we get 19 low-energy states, and some of them
are rather close in energy (they become degenerate for J′ ) 0).
In order not to overload the table, we document the magnetic
anisotropy for the five lowest and the three highest states. Again
we see interesting features, such as the reversal of the sign of
the axial anisotropy for the lowest spin states. The lowest septet
(S ) 3) state has a lower magnetic anisotropy than the lowest
quintet (S ) 2) state, so the anisotropy is not a simple function
of S. The calculated axial anisotropy of the high-spin (S ) 6)
state matches the Kohn-Sham result for the UUU configuration
with a deviation <5%, which again can be used to assess the
validity of the many-spin Hamiltonian (eq 4). For the highest S
) 4 state, which is energetically closest to the UUD configu-
ration, the question may arise which single-ion tensors Di one
should choose, because the UUD configuration breaks spatial
symmetry and the tensors D1 and D3 are not properly related
by symmetry. This is not a severe problem since the eigen-
functions of the spin Hamiltonian are spatially nondegenerate
in our case, and therefore a correct symmetrization automatically
takes place. If one does not impose the strong exchange limit,
one may however want to do a symmetrization (of the
nonequivalent tensors for symmetry equivalent atoms) beforehand.

Finally we investigated how the results for Mn3O4 obtained
here depend on the values of the exchange coupling constants
(more specifically, the ratio J/J′). We do so because the coupling
constant between the terminal ions in Mn3O4 (2) looks somewhat
dubious and has been extracted from the nonequidistance of
the broken symmetry energies (see Table 1). Fortunately, the
calculated magnetic anisotropy for the ground state of Mn3O4

(2) is rather insensitive to the value of the coupling constant J′.
Keeping J fixed at 334 K and increasing J′, the calculated
magnetic anisotropy of the ground state does not change until
J′ ) (1/2)J ) 168 K, when the triplet becomes the ground state.
If J′ is smaller than 30 K or even negative, the multiplicity of
the ground state as well as the calculated magnetic anisotropy
does not change. What happens at J′ ) 0 is that the third (S )
0) and fourth (S ) 2) excited states become degenerate, but
this is of no concern for the ground state properties. On the
whole, the ratio J/J′ is not critical for the magnetic anisotropy.

Conclusions

A procedure for the calculation of magnetic anisotropy
energies and zero field splitting parameters for multinuclear
transition metal complexes with antiferromagnetic coupling has
been proposed. The final results come from a spin Hamiltonian
calculation and the parameters used to setup the Spin Hamil-
tonian are extracted from Kohn-Sham broken symmetry density
functional calculations. This is formally an extension of the well-
established procedure to extract exchange coupling constants
from such calculations. Since the calculated magnetic anisotropy

energies for the various broken symmetry solutions do not
provide enough information, one has to extract single-ion
information from the Kohn-Sham calculations. The procedure
has been demonstrated using two simple bi- and trinuclear model
systems, thus also providing a challenge to wave function based
ab initio quantum chemistry to check whether the presented data
is qualitatively correct.

If the spin-dipolar interaction is to be included in the
calculation, the two-center terms have to be subtracted from
the results for the broken-symmetry solutions before extracting
single-ion tensors. This is necessary because we suggest to use
a spin Hamiltonian with single-ion terms only. Subtracting the
two-center spin-dipolar contribution from the broken symmetry
results can be done using a point-dipolar approximation. At
the very end, the contribution of this two-center term can be
evaluated and added to form the final result, for any state under
consideration, using a spin-dipolar approximation with effective
atomic spin moments that can be obtained from the eigenfunc-
tions of the Heisenberg spin Hamiltonian.
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